Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.

Identifieur interne : 000190 ( Main/Exploration ); précédent : 000189; suivant : 000191

Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.

Auteurs : Muhammad Hafeez [Pakistan] ; Maryum Zeb [Pakistan] ; Abdullah Khan [Pakistan] ; Bilal Akram [République populaire de Chine] ; Zain-Ul Abdin [Pakistan] ; Sirajul Haq [Pakistan] ; Muhammad Zaheer [Pakistan] ; Shaukat Ali [Pakistan]

Source :

RBID : pubmed:32979017

Abstract

Design and synthesis of bactericidal and fungicidal agents is very important to protect human beings from different diseases. Silver nanoparticles (AgNPs) possess good bactericidal properties. Synthesis of these nanoparticles (NPs) via green route is cost-effective and environmentally harmonious as compared to the chemical and physical approaches. In this work, AgNPs were synthesized through green synthesis method using Populus ciliata leaf extract. The synthesized AgNPs were characterized by x-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) techniques. The XRD pattern depicted the characteristic Bragg's peaks of (111), (200), (220), and (311) planes which are the features of face centered cubic (FCC) geometry of the synthesized AgNPs. TEM micrographs revealed the spherical shaped particles having average size of 4 nm. The AgNPs showed inhibitory effects against selected gram positive (Staphylococcus epidermidis and Streptococcus pyogenes) and gram negative bacteria (Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas pseudoalcaligenes). The maximum zone of inhibition (26 mm) was observed for gram negative bacterium (Serratia marcescens) when 25 mg/ml solution of AgNPs was used and for similar concentration of these NPs, the maximum zone of inhibition (25 mm) was observed against gram positive bacteria (S. pyogenes). The results indicated good bactericidal potential of the synthesized AgNPs. RESEARCH HIGHLIGHTS: Populus ciliata leaf extract mediated synthesis of AgNPs. Transmission electron microscopy analysis revealed very small size of the synthesized AgNPs (4 nm). The synthesized AgNPs were found very effective against various bacterial pathogens.

DOI: 10.1002/jemt.23604
PubMed: 32979017


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.</title>
<author>
<name sortKey="Hafeez, Muhammad" sort="Hafeez, Muhammad" uniqKey="Hafeez M" first="Muhammad" last="Hafeez">Muhammad Hafeez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zeb, Maryum" sort="Zeb, Maryum" uniqKey="Zeb M" first="Maryum" last="Zeb">Maryum Zeb</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khan, Abdullah" sort="Khan, Abdullah" uniqKey="Khan A" first="Abdullah" last="Khan">Abdullah Khan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, QAU, Islamabad, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Environmental Sciences, QAU, Islamabad</wicri:regionArea>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Akram, Bilal" sort="Akram, Bilal" uniqKey="Akram B" first="Bilal" last="Akram">Bilal Akram</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Tsinghua University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Chemistry, Tsinghua University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abdin, Zain Ul" sort="Abdin, Zain Ul" uniqKey="Abdin Z" first="Zain-Ul" last="Abdin">Zain-Ul Abdin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haq, Sirajul" sort="Haq, Sirajul" uniqKey="Haq S" first="Sirajul" last="Haq">Sirajul Haq</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zaheer, Muhammad" sort="Zaheer, Muhammad" uniqKey="Zaheer M" first="Muhammad" last="Zaheer">Muhammad Zaheer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Chemical Engineering, LUMS, Lahore, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry and Chemical Engineering, LUMS, Lahore</wicri:regionArea>
<wicri:noRegion>Lahore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ali, Shaukat" sort="Ali, Shaukat" uniqKey="Ali S" first="Shaukat" last="Ali">Shaukat Ali</name>
<affiliation wicri:level="1">
<nlm:affiliation>Applied Entomology and Medical Toxicology Laboratory, Government College University, Lahore, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Applied Entomology and Medical Toxicology Laboratory, Government College University, Lahore</wicri:regionArea>
<wicri:noRegion>Lahore</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32979017</idno>
<idno type="pmid">32979017</idno>
<idno type="doi">10.1002/jemt.23604</idno>
<idno type="wicri:Area/Main/Corpus">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000090</idno>
<idno type="wicri:Area/Main/Curation">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000090</idno>
<idno type="wicri:Area/Main/Exploration">000090</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.</title>
<author>
<name sortKey="Hafeez, Muhammad" sort="Hafeez, Muhammad" uniqKey="Hafeez M" first="Muhammad" last="Hafeez">Muhammad Hafeez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zeb, Maryum" sort="Zeb, Maryum" uniqKey="Zeb M" first="Maryum" last="Zeb">Maryum Zeb</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khan, Abdullah" sort="Khan, Abdullah" uniqKey="Khan A" first="Abdullah" last="Khan">Abdullah Khan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, QAU, Islamabad, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Environmental Sciences, QAU, Islamabad</wicri:regionArea>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Akram, Bilal" sort="Akram, Bilal" uniqKey="Akram B" first="Bilal" last="Akram">Bilal Akram</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Tsinghua University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Chemistry, Tsinghua University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abdin, Zain Ul" sort="Abdin, Zain Ul" uniqKey="Abdin Z" first="Zain-Ul" last="Abdin">Zain-Ul Abdin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haq, Sirajul" sort="Haq, Sirajul" uniqKey="Haq S" first="Sirajul" last="Haq">Sirajul Haq</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir</wicri:regionArea>
<wicri:noRegion>Azad Kashmir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zaheer, Muhammad" sort="Zaheer, Muhammad" uniqKey="Zaheer M" first="Muhammad" last="Zaheer">Muhammad Zaheer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Chemical Engineering, LUMS, Lahore, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Department of Chemistry and Chemical Engineering, LUMS, Lahore</wicri:regionArea>
<wicri:noRegion>Lahore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ali, Shaukat" sort="Ali, Shaukat" uniqKey="Ali S" first="Shaukat" last="Ali">Shaukat Ali</name>
<affiliation wicri:level="1">
<nlm:affiliation>Applied Entomology and Medical Toxicology Laboratory, Government College University, Lahore, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Applied Entomology and Medical Toxicology Laboratory, Government College University, Lahore</wicri:regionArea>
<wicri:noRegion>Lahore</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microscopy research and technique</title>
<idno type="eISSN">1097-0029</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Design and synthesis of bactericidal and fungicidal agents is very important to protect human beings from different diseases. Silver nanoparticles (AgNPs) possess good bactericidal properties. Synthesis of these nanoparticles (NPs) via green route is cost-effective and environmentally harmonious as compared to the chemical and physical approaches. In this work, AgNPs were synthesized through green synthesis method using Populus ciliata leaf extract. The synthesized AgNPs were characterized by x-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) techniques. The XRD pattern depicted the characteristic Bragg's peaks of (111), (200), (220), and (311) planes which are the features of face centered cubic (FCC) geometry of the synthesized AgNPs. TEM micrographs revealed the spherical shaped particles having average size of 4 nm. The AgNPs showed inhibitory effects against selected gram positive (Staphylococcus epidermidis and Streptococcus pyogenes) and gram negative bacteria (Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas pseudoalcaligenes). The maximum zone of inhibition (26 mm) was observed for gram negative bacterium (Serratia marcescens) when 25 mg/ml solution of AgNPs was used and for similar concentration of these NPs, the maximum zone of inhibition (25 mm) was observed against gram positive bacteria (S. pyogenes). The results indicated good bactericidal potential of the synthesized AgNPs. RESEARCH HIGHLIGHTS: Populus ciliata leaf extract mediated synthesis of AgNPs. Transmission electron microscopy analysis revealed very small size of the synthesized AgNPs (4 nm). The synthesized AgNPs were found very effective against various bacterial pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32979017</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0029</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Microscopy research and technique</Title>
<ISOAbbreviation>Microsc Res Tech</ISOAbbreviation>
</Journal>
<ArticleTitle>Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jemt.23604</ELocationID>
<Abstract>
<AbstractText>Design and synthesis of bactericidal and fungicidal agents is very important to protect human beings from different diseases. Silver nanoparticles (AgNPs) possess good bactericidal properties. Synthesis of these nanoparticles (NPs) via green route is cost-effective and environmentally harmonious as compared to the chemical and physical approaches. In this work, AgNPs were synthesized through green synthesis method using Populus ciliata leaf extract. The synthesized AgNPs were characterized by x-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) techniques. The XRD pattern depicted the characteristic Bragg's peaks of (111), (200), (220), and (311) planes which are the features of face centered cubic (FCC) geometry of the synthesized AgNPs. TEM micrographs revealed the spherical shaped particles having average size of 4 nm. The AgNPs showed inhibitory effects against selected gram positive (Staphylococcus epidermidis and Streptococcus pyogenes) and gram negative bacteria (Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas pseudoalcaligenes). The maximum zone of inhibition (26 mm) was observed for gram negative bacterium (Serratia marcescens) when 25 mg/ml solution of AgNPs was used and for similar concentration of these NPs, the maximum zone of inhibition (25 mm) was observed against gram positive bacteria (S. pyogenes). The results indicated good bactericidal potential of the synthesized AgNPs. RESEARCH HIGHLIGHTS: Populus ciliata leaf extract mediated synthesis of AgNPs. Transmission electron microscopy analysis revealed very small size of the synthesized AgNPs (4 nm). The synthesized AgNPs were found very effective against various bacterial pathogens.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals LLC.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hafeez</LastName>
<ForeName>Muhammad</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0966-827X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeb</LastName>
<ForeName>Maryum</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Abdullah</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Sciences, QAU, Islamabad, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akram</LastName>
<ForeName>Bilal</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abdin</LastName>
<ForeName>Zain-Ul</ForeName>
<Initials>ZU</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Haq</LastName>
<ForeName>Sirajul</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaheer</LastName>
<ForeName>Muhammad</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Chemical Engineering, LUMS, Lahore, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Shaukat</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Applied Entomology and Medical Toxicology Laboratory, Government College University, Lahore, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microsc Res Tech</MedlineTA>
<NlmUniqueID>9203012</NlmUniqueID>
<ISSNLinking>1059-910X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AgNPs</Keyword>
<Keyword MajorTopicYN="N">Populus ciliata</Keyword>
<Keyword MajorTopicYN="N">antibacterial activity</Keyword>
<Keyword MajorTopicYN="N">green synthesis</Keyword>
<Keyword MajorTopicYN="N">transmission electron microscopy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>8</Hour>
<Minute>33</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32979017</ArticleId>
<ArticleId IdType="doi">10.1002/jemt.23604</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abdelghany, T., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M., Magdah, A. G., Helmy, E. A., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. BioNanoScience, 8, 5-16.</Citation>
</Reference>
<Reference>
<Citation>Ajayi, E., & Afolayan, A. (2017). Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 1-8.</Citation>
</Reference>
<Reference>
<Citation>Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Al-Massarani, S. M., Saquib, Q., Wahab, R., & Siddiqui, M. A. (2018). Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications, 2018, 1-12.</Citation>
</Reference>
<Reference>
<Citation>Anbu, P., Gopinath, S. C., Yun, H. S., & Lee, C.-G. (2019). Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. Journal of Molecular Structure, 1177, 302-309.</Citation>
</Reference>
<Reference>
<Citation>Anjum, T., & Ashraf, H. (2020). Microwave assisted green synthesis and characterization of silver nanoparticles using Melia azedarach for the management of fusarium wilt in tomato. Frontiers in Microbiology, 11, 238-248.</Citation>
</Reference>
<Reference>
<Citation>Annamalai, J., & Nallamuthu, T. (2016). Green synthesis of silver nanoparticles: Characterization and determination of antibacterial potency. Applied Nanoscience, 6, 259-265.</Citation>
</Reference>
<Reference>
<Citation>Ashraf, M. A., Peng, W., Zare, Y., & Rhee, K. Y. (2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13, 214-223.</Citation>
</Reference>
<Reference>
<Citation>Aswathy, R., Preethy, C., & Khan, S. S. (2013). Biofunctionalized silver nanoparticles: Advances and prospects. Colloids and Surfaces B: Biointerfaces, 105, 342-352.</Citation>
</Reference>
<Reference>
<Citation>B Aziz, S., Hussein, G., Brza, M., J Mohammed, S., T Abdulwahid, R., Raza Saeed, S., & Hassanzadeh, A. (2019). Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface Plasmon resonance (LSPR) peaks using quince leaf extract solution. Nanomaterials, 9, 1557-1571.</Citation>
</Reference>
<Reference>
<Citation>Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148-154.</Citation>
</Reference>
<Reference>
<Citation>Carson, L., Bandara, S., Joseph, M., Green, T., Grady, T., Osuji, G., & Woldesenbet, S. (2020). Green synthesis of silver nanoparticles with antimicrobial properties using Phyla- dulcis plant extract. Foodborne Pathogens and Disease, 17, 1-8.</Citation>
</Reference>
<Reference>
<Citation>Das, J., Das, M. P., & Velusamy, P. (2013). Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 265-270.</Citation>
</Reference>
<Reference>
<Citation>Dzul-Erosa, M. S., Cauich-Díaz, M. M., Razo-Lazcano, T. A., Avila-Rodriguez, M., Reyes-Aguilera, J. A., & González-Muñoz, M. P. (2018). Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatan Mexico. Part II: Uses for the phytomediated synthesis of silver nanoparticles. Materials Science and Engineering: C, 91, 838-852.</Citation>
</Reference>
<Reference>
<Citation>Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., & Cevik, O. (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One, 14, 1-15.</Citation>
</Reference>
<Reference>
<Citation>Feroze, N., Arshad, B., Younas, M., Afridi, M. I., Saqib, S., & Ayaz, A. (2020). Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research & Technique, 83, 72-80.</Citation>
</Reference>
<Reference>
<Citation>Gamboa, S., Rojas, E., & Martínez, V. (2019). Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. International Journal of Biosensers & Bioelectronics, 5, 166-173.</Citation>
</Reference>
<Reference>
<Citation>Hafeez, M., Arshad, R., Hameed, M. U., Akram, B., Ahmed, M. N., Kazmi, S. A., & Ali, S. (2019). Populus ciliata leaves extract mediated synthesis of zinc oxide nanoparticles and investigation of their anti-bacterial activities. Materials Research Express, 6(7), 1-8.</Citation>
</Reference>
<Reference>
<Citation>Hafeez, M., Arshad, R., Khan, J., Akram, B., Ahmad, M. N., Hameed, M. U., & Haq, S. (2019). Populus ciliata mediated synthesis of copper oxide nanoparticles for potential biological applications. Materials Research Express, 6(5), 1-8.</Citation>
</Reference>
<Reference>
<Citation>Hafeez, M., Shaheen, R., Akram, B., Haq, S., Mahsud, S., Ali, S., & Khan, R. T. (2020). Green synthesis of cobalt oxide nanoparticles for potential biological applications. Materials Research Express, 7, 1-8.</Citation>
</Reference>
<Reference>
<Citation>He, Y., Wei, F., Ma, Z., Zhang, H., Yang, Q., Yao, B., & Zhang, Q. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Advances, 7, 39842-39851.</Citation>
</Reference>
<Reference>
<Citation>Khan, A. U., Malik, N., Khan, M., Cho, M. H., & Khan, M. M. (2018). Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess and Biosystems Engineering, 41(1), 1-20.</Citation>
</Reference>
<Reference>
<Citation>Khan, E., Khan, S., Gul, Z., & Muhammad, M. (2020). Medicinal importance, coordination chemistry with selected metals (cu, Ag, au) and Chemosensing of Thiourea derivatives. A review. Critical Reviews in Analytical Chemistry, 1-23.</Citation>
</Reference>
<Reference>
<Citation>Lindahl, J. F., & Grace, D. (2015). The consequences of human actions on risks for infectious diseases: A review. Infection Ecology and Epidemiology, 5, 1-11.</Citation>
</Reference>
<Reference>
<Citation>Matei, A., Matei, S., Matei, G.-M., Cogălniceanu, G., & Cornea, C. P. (2020). Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. The EuroBiotech Journal, 4, 97-103.</Citation>
</Reference>
<Reference>
<Citation>Moodley, J. S., Krishna, S. B. N., Pillay, K., & Govender, P. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 1-8.</Citation>
</Reference>
<Reference>
<Citation>Naghizadeh, A., & Gholami, K. (2017). Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions. Journal of Water and Health, 15(4), 555-565.</Citation>
</Reference>
<Reference>
<Citation>Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., & Ishihara, M. (2019). Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. International Journal of Molecular Sciences, 20, 3620-3637.</Citation>
</Reference>
<Reference>
<Citation>Ovais, M., Ahmad, I., Khalil, A. T., Mukherjee, S., Javed, R., Ayaz, M., & Shinwari, Z. K. (2018). Wound healing applications of biogenic colloidal silver and gold nanoparticles: Recent trends and future prospects. Applied Microbiology and Biotechnology, 102, 4305-4318.</Citation>
</Reference>
<Reference>
<Citation>Patil, M. P., & Kim, G. D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology, 101, 79-92.</Citation>
</Reference>
<Reference>
<Citation>Patil, S., Chaudhari, G., Paradeshi, J., Mahajan, R., & Chaudhari, B. L. (2017). Instant green synthesis of silver-based herbo-metallic colloidal nanosuspension in Terminalia bellirica fruit aqueous extract for catalytic and antibacterial applications. 3 Biotech, 7, 36-47.</Citation>
</Reference>
<Reference>
<Citation>Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9, 1-9.</Citation>
</Reference>
<Reference>
<Citation>Rajput, N. (2015). Methods of preparation of nanoparticles. A review. International Journal of Advances in Engineering & Technology, 7, 1806-1811.</Citation>
</Reference>
<Reference>
<Citation>Rather, M., Pandian, K. J., Sundarapandian, S., & Yogamoorthi, A. (2017). Biosynthesis and characterization of silver nanoparticles using leaf extract of Wedelia urticifolia (Blume) DC and evaluation of antibacterial efficacy. IOSR Journal of Pharmacy and Biological Sciences, 12, 14-23.</Citation>
</Reference>
<Reference>
<Citation>Rather, M. Y., Shincy, M. Y., & Sundarapandian, S. (2020). Silver nanoparticles synthesis using Wedelia urticifolia (Blume) DC. Flower extract: Characterization and antibacterial activityevaluation. Microscopy Research & Technique, 83, 1085-1094.</Citation>
</Reference>
<Reference>
<Citation>Saravanan, M., Arokiyaraj, S., Lakshmi, T., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microbial Pathogenesis, 117, 68-72.</Citation>
</Reference>
<Reference>
<Citation>Saravanan, M., Barik, S. K., Mubarak, A. D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathogenesis, 116, 221-226.</Citation>
</Reference>
<Reference>
<Citation>Sowmya, C., Lavakumar, V., Venkateshan, N., Ravichandiran, V., & Saigopal, D. (2018). Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen. Chemistry Central Journal, 12, 1-9.</Citation>
</Reference>
<Reference>
<Citation>Umoren, S., Obot, I., & Gasem, Z. (2014). Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. Journal of Materials & Environtal Sciences, 5, 907-914.</Citation>
</Reference>
<Reference>
<Citation>Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40, 277-283.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pakistan</li>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="Pakistan">
<noRegion>
<name sortKey="Hafeez, Muhammad" sort="Hafeez, Muhammad" uniqKey="Hafeez M" first="Muhammad" last="Hafeez">Muhammad Hafeez</name>
</noRegion>
<name sortKey="Abdin, Zain Ul" sort="Abdin, Zain Ul" uniqKey="Abdin Z" first="Zain-Ul" last="Abdin">Zain-Ul Abdin</name>
<name sortKey="Ali, Shaukat" sort="Ali, Shaukat" uniqKey="Ali S" first="Shaukat" last="Ali">Shaukat Ali</name>
<name sortKey="Haq, Sirajul" sort="Haq, Sirajul" uniqKey="Haq S" first="Sirajul" last="Haq">Sirajul Haq</name>
<name sortKey="Khan, Abdullah" sort="Khan, Abdullah" uniqKey="Khan A" first="Abdullah" last="Khan">Abdullah Khan</name>
<name sortKey="Zaheer, Muhammad" sort="Zaheer, Muhammad" uniqKey="Zaheer M" first="Muhammad" last="Zaheer">Muhammad Zaheer</name>
<name sortKey="Zeb, Maryum" sort="Zeb, Maryum" uniqKey="Zeb M" first="Maryum" last="Zeb">Maryum Zeb</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Akram, Bilal" sort="Akram, Bilal" uniqKey="Akram B" first="Bilal" last="Akram">Bilal Akram</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000190 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000190 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32979017
   |texte=   Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32979017" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020